# SONY

# **Color Digital Camera**

**Technical Manual** 





© 2004 Sony Corporation

# **Table of Contents**

| Overview   |                                                       |
|------------|-------------------------------------------------------|
|            | Main Features 3                                       |
|            |                                                       |
|            | System Components                                     |
|            | Connection Diagram6                                   |
|            | Location of Parts and Operation                       |
| Functions  |                                                       |
| i unotione | IIDC Standard Features8                               |
|            | Brightness                                            |
|            |                                                       |
|            | Auto Exposure                                         |
|            | Sharpness                                             |
|            | White Balance                                         |
|            | Hue                                                   |
|            | Saturation 8                                          |
|            | Gamma9                                                |
|            | Shutter                                               |
|            | Gain 10                                               |
|            | Trigger Shutter 10                                    |
|            | Pan/Tilt                                              |
|            | Optical Filter                                        |
|            | Memory Channels                                       |
|            | Partial Scan                                          |
|            | IIDC Extended Features                                |
|            | Memory Shot                                           |
|            | PAINT                                                 |
|            |                                                       |
|            | User Memory Area                                      |
|            | Non-IIDC Features 14                                  |
|            | 1394 Bus Synchronization 14                           |
|            | Exposure Out14                                        |
| Control    |                                                       |
| •••••••    | Camera Command Status Register                        |
|            | Memory Map 15                                         |
|            | ConfigROM                                             |
|            | Control Base Address                                  |
|            |                                                       |
|            | Verifying Supported Video Modes                       |
|            | Video Mode Settings                                   |
|            | Starting/Stopping Video Transfer (Continuous Shot) 20 |
|            | One Shot and Multi Shot                               |
|            | Memory Channel Operation 21                           |
|            | Feature Controls (Complies with the IIDC Standard) 22 |
|            | Feature Controls (IIDC Extended) 27                   |
|            | PAINT Control 28                                      |
|            | Memory Shot Control 28                                |
|            | User Memory Control 28                                |
|            | Partial Scan Operations 29                            |
| Annondix   |                                                       |
| Appendix   |                                                       |
|            | Notes on the Camera Operations                        |
|            | Timing Between External Trigger Signal and Video      |
|            | Signal Output 34                                      |
|            | Specifications 35                                     |
|            | CCD Pixel Location (Top View)                         |
|            | Spectral Sensitivity (Relative Response)              |
|            |                                                       |
|            | Parameters 40                                         |
|            | Dimensions 40                                         |

# **Overview**

The DFW-SX910 with its <sup>1</sup>/<sub>2</sub>-type PS IT CCD, and the DFW-X710 with its <sup>1</sup>/<sub>3</sub>-type PS IT CCD are highresolution industrial-use digital video camera modules. The IEEE1394–1995 digital interface realizes a transfer speed of 400 Mbps and outputs SXGA (1280  $\times$  960)/YUV (4:2:2)/7.5 fps with the DFW-SX910, XGA (1024  $\times$  768)/YUV (4:2:2)/15 fps with the DFW-X710. In addition, the DFW-SX910/X710 also adopts a primary color filter CCD to realize good color reproducibility, as well as a square pixel CCD to eliminate the need for aspect ratio conversion in the image processor.

#### What is the IEEE1394?

The IEEE1394 is the standard serial bus for sending and receiving digital data. It is prescribed as "IEEE\* Std. 1394-1995 IEEE Standard for a High Performance Serial Bus."

The most outstanding feature of this interface is that it realizes transfer speeds of up to 400 Mbps and can handle large image data size. The interface is also capable of "Isochronous transmission" which transmits data real-time, for up to 64 channels. Connectors can be inserted and disconnected while the unit is turned on, and no terminators and no ID settings such as those necessary for the SCSI interface are required.

\* The Institute of Electrical and Electronics Engineers, Inc.

### **Main Features**

The DFW-SX910 video camera module utilizes a <sup>1</sup>/<sub>2</sub>-type PS IT CCD, and the DFW-X710 utilizes a <sup>1</sup>/<sub>3</sub>-type PS IT CCD

#### High-speed digital interface IEEE1394

The transmission speed is 400 Mbps. The DFW-SX910 can output a digital image at 7.5 frames per second; the DFW-X710 can output a digital image at 15 frames per second.

#### **High-resolution**

The DFW-SX910 (SXGA) has a high-resolution CCD of 1.45 million pixels. The DFW-X710 (XGA) has a high-resolution CCD of 800,000 pixels. Because the CCDs are square pixel CCDs, you don't need to convert the aspect ratio in your image processing.

#### **External trigger function**

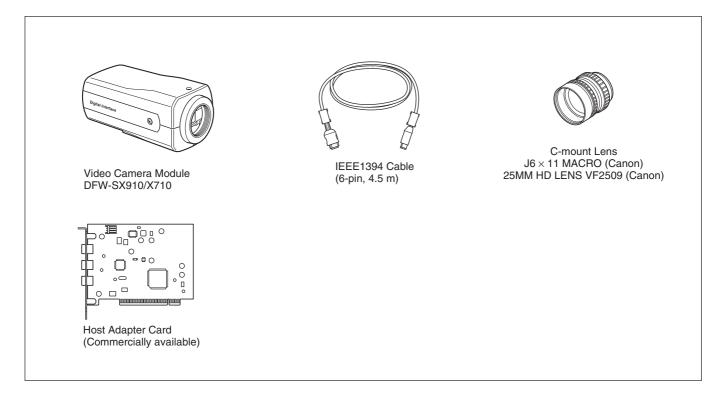
The external trigger shutter function allows the image exposure to be coordinated with external equipment and moving objects.

For exposure time, the unit is equipped with Trigger Mode 0, which indicates the length of the exposure using the shutter parameter, and Trigger Mode 1, which controls exposure time by the width of the trigger signal.

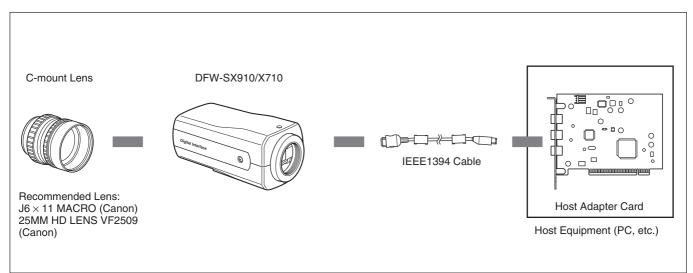
It is also able to utilize a software trigger initiated by a command from a program running on a host computer.

#### Partial scan output image format

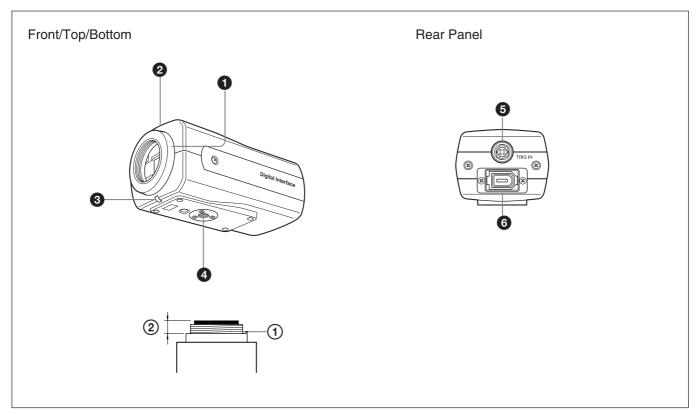
You can select and output any rectangle part from a full-size image. This allows you to efficiently capture images at a faster frame rate.


#### C-mount

Non-compressed YUV4:1:1/ YUV4:2:2/ Mono8 (8 bits each)


Solid aluminum diecast chassis

# **System Components**


The DFW-SX910/X710 Video Camera Module system comprises the following components.



# **Connection Diagram**



## **Location of Parts and Operation**



#### **1** Lens mount (C-mount)

Attach any C-mount lens or other optical equipment.

#### Note

The lens must not project more than 7 mm ( $^{9}/_{32}$  inch) from the lens mount.

(1) Lens mount face (2) 7 mm ( $^{9}/_{32}$  inch) or less

#### **2** Flange back hole

Adjust the flange back by adjusting the screw at the bottom of this hole.

#### **3** Pilot lamp

This lamp indicates the camera module operation states:

OFF: Camera power OFF Green: Camera power ON/Video signal output OFF Orange: Camera power ON/Video signal output ON

#### **4** Tripod hole

Install a tripod into this hole.

#### **5** TRIG IN/Exposure OUT connector

Connect the trigger signal generator (trigger output connector) to this connector.

When trigger is OFF, or software trigger is ON, a signal that indicates the exposure time is output from pin 1 of the camera.

For details on the exposure out, see "Exposure Out" (page 14).

#### **6** CAMERA connector

Connect the IEEE1394 camera cable (supplied) to this connector.

# **Functions**

# **IIDC Standard Features**

Following features are defined by the IIDC standard, v1.30. Only the Trigger feature is defined by the IIDC standard, v1.31.

### **Brightness**

This feature makes fine adjustment of the black level possible.

### **Auto Exposure**

This feature automatically adjusts the gain and shutter settings, based on the brightness of the subject. To use this feature, set the camera features and the video format/mode as follows. This feature may not function properly in any other settings.

| Standard settings |                     |  |  |  |
|-------------------|---------------------|--|--|--|
| DFW-SX910         | Video Format: 2     |  |  |  |
|                   | Video Mode: 0       |  |  |  |
|                   | Frame Rate: 7.5 fps |  |  |  |
|                   | Trigger: OFF        |  |  |  |
|                   |                     |  |  |  |
| DFW-X710          | Video Format: 1     |  |  |  |
|                   | Video Mode: 3       |  |  |  |
|                   | Frame Rate: 15 fps  |  |  |  |
|                   | Trigger: OFF        |  |  |  |
|                   |                     |  |  |  |

### Sharpness

The picture can be adjusted using eight levels of sharpness.

### White Balance

This feature adjusts the color balance of the camera to ensure that a white subject appears white in the video image. Both manual and automatic settings are available.

There are two automatic white balance modes; Auto White Balance and One Push White Balance. In the Auto White Balance mode, the camera senses any change in lighting and automatically adjusts White Balance accordingly. In the One Push White Balance mode, the White Balance is adjusted automatically once and fixed until you perform the adjustment again. The camera's internal circuits integrate the image data within a defined area, using an algorithm that approximates the average value to white. Because of this algorithm, depending on the lighting environment, a white subject may appear other than white in the Auto White Balance mode.

We recommend that you shoot a white subject so that white fills the entire screen in the specified lighting environment and then perform the One Push White Balance adjustment. When the calculation is completed, the White Balance in this lighting environment is adjusted.

The range of operation of each mode is as follows. Manual : 2400 to 10000 K or more

Auto/One Push Auto: 2400 to 10000 K or more Additionally, the camera employs a feature which can change the reference point of the White Balance. For details, see "PAINT" on page 14.

### Hue

This feature adjusts color tones.

### Saturation

This feature adjusts color intensity.

 $14 \ \mu s \ (1/100000)$ 

1.005 ms (1/1000)

10.005 ms (1/100)

2

1000

1150

1 s

2 s

16 s

### Gamma

Setting examples

16 s

1 s

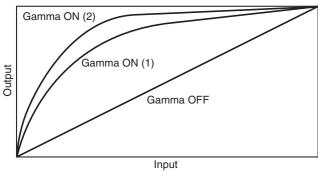
10 µs

З

3 (003h) :

32 (020h) :

100 (064h) :


1000 (3E8h) :

1010 (3F2h) :

1150 (47Eh) :

| Used for setting gamma compensation to OFF, ON (1), |
|-----------------------------------------------------|
| or ON (2).                                          |

- OFF : Outputs CCD signals for image processing linearly.
- ON (1) : For obtaining natural gradation taking into account the characteristics of the monitor.
- ON (2): For obtaining three-dimensional images with a subject that has a small luminance dynamic range.



**Concept of Gamma Characteristics** 

### Shutter

This feature sets exposure time. Both manual and automatic settings are available.

When the automatic setting is selected, Shutter is adjusted automatically, based on the brightness of the subject.

At this time, the reference level (target point) of the brightness is set in the Auto Exposure register. With manual setting, the camera uses relative control values indicated by a 12-bit integer and absolute control values indicated using a 32-bit floating point number.

#### **Relative control values for Shutter**

The relationship between the parameter and the exposure time is given by the following formulas. Where

P = Parameter (003h ~ 47Eh) E = Exposure time (s) P >= 3 ~ P <= 1000 E =  $\frac{P^2}{1000000}$  + 0.000005 (1) P > 1000 ~ P <= 1150 E = (P - 1000)\*0.1 + 1.000005 (2)



1

#### For long exposure times

When exposure times longer than the currently set frame rate cycle are set, the camera enters the long exposure time mode, and the actual frame rate is slowed in accordance with the exposure time.

#### Absolute control values for Shutter

Control of exposure time using absolute values is possible. The values are indicated using a 32-bit floating point value. (Unit: sec.) The control steps are synchronized with the pixel clock, and as the pixel clock is 15.25 MHz, one step is approximately 65.6 ns. The range for these values extends from 10 microseconds to 17.5 seconds.

#### Programming example;

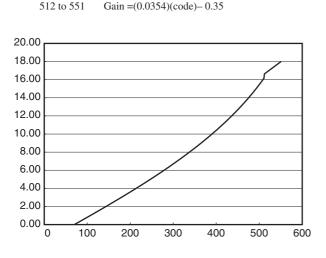
| union {  |               |          |                                           |
|----------|---------------|----------|-------------------------------------------|
|          | DWORD         | dwValue; | // 1394 is expressed in quadlets,         |
|          | float         | fValue;  | // exposure time is indicated in seconds. |
| } Absolu | uteShutterVal | lue;     |                                           |

AbsoluteShutterValue.fValue = Exposure time; WriteQuad(AbsoluteShutterOffsetAddress, AbsoluteShutterValue.dwValue);

WriteQuad is a virtual function used to write in the 1394 register.

AbsoluteShutterOffsetAddress is an offset address for the absolute value control. See page 26 for the formula for the offset address.

The change in shutter time will be used when the next exposure starts. The current exposure will complete with the previous shutter setting. This is true for all exposure; short or long. If you intend to reflect the new setting immediately, stop the output and start it again.


### Gain

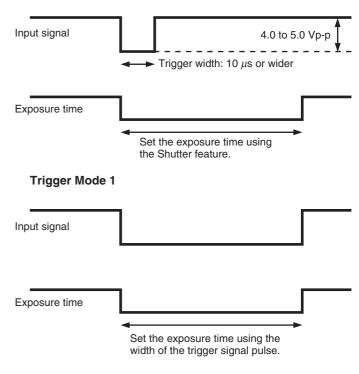
70 to 511

This feature adjusts the brightness of the picture. Both manual and automatic settings are available. The variable range extends from 0 to 18 dB.

When automatic setting is selected, Gain is adjusted automatically, based on the brightness of the subject. At this time, the reference level (target point) of the brightness is set in the Auto Exposure register. For details on Auto Exposure, see page 8.

 $Gain = 20log_{10}([658+code]/[658-code]) - 0.35$ 




### **Trigger Shutter**

This feature allows you to control the exposure timing via a external signal input (Hardware Trigger) or via a command sent from application software (Software Trigger). There are two trigger modes:

- Trigger Mode 0 where the exposure time is controlled by the shutter parameter
- Trigger Mode 1 where the exposure time is controlled by the trigger pulse width.

In both modes, the leading edge of the hardware trigger starts the exposure. In Trigger Mode 0, the maximum exposure is limited by the shutter parameter. In Trigger Mode 1, there is no limit to the exposure time.

Software Trigger is defined by IIDC Standard, v1.31.



• Input impedance: 10 k $\Omega$ 

It is possible to trigger the cameras at full frame rate using hardware trigger. (This was not possible with the earlier DFW-SX900/X700 because the trigger in would not be accepted until after the previous images was output from the camera.) It is very important that the exposure not end before the previous image is out of the cameras. If the camera is trigger too fast or there is noise on the trigger line that will cause the exposure to end before previous image is output, you will get double exposure of the image.

#### Trigger Mode 0

### Pan/Tilt

Pan/Tilt is a feature to move a region of interest (ROI) image (smaller than the full image) vertically and horizontally about the full image of the camera. When the ROI image is defined (use the video mode setup), the ROI is centered in the full image.

### **Optical Filter**

Normally, Optical Filter is the feature which switches electronic optical filters, such as an ND filter or a color conversion filter. However, on this camera, the feature chooses the preset values of White Balance. If 0 is set, White Balance for 3200 K is utilized. If 1 is set, White Balance for 5600 K is utilized.

This feature is effective when the color temperature of the shooting environment is 3200 K or 5600 K.

### **Memory Channels**

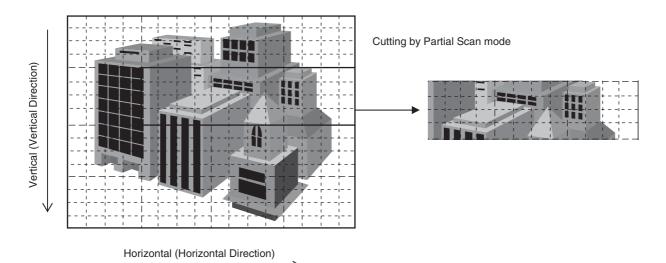
The camera is equipped with two channels of nonvolatile memory to hold camera settings. The settings of all camera features and the video mode can be stored. The camera memorizes the channel most recently used to read out the setting information, and retains it, even if the power is turned off. Therefore, the camera loads the information from that channel when the power is turned on.

The video mode settings are loaded only when the power is turned on.

To start up the camera with the desired setting, perform the following procedure.

- 1 Make changes to the camera features or the video mode settings.
- **2** Store the current setting in Memory Channel 1 or Memory Channel 2.
- **3** Load the information that was stored in step **2**.

When you start up the camera the next time, the settings that you have just made will be loaded automatically.


Using the CameraInitialize command, the setting information stored in the channels is cleared and the camera features and the video mode are reset to their initial values. To preserve the information in the channels, be sure not to send the CameraInitialize command while driver software or application software is starting up.

The value saved for Pan/Tilt is initialized when the video mode is changed. To preserve the value, be sure not to change the video mode while driver software or application software is starting up, or before sending the video start command.

### **Partial Scan**

The Partial Scan feature for outputting a small part of the full image called a Region of Interest (ROI). The ROI can be defined as any single contiguous rectangle that can be drawn on an even  $16 \times 16$  grid of the whole image. The Unit Cell is the smallest region of interest that can be defined as is one of the rectangles on the even  $16 \times 16$  grid.

DFW-SX910 unit cell =  $80 \times 60$  pixels DFW-X710 unit cell =  $64 \times 48$  pixels



The frame rate of the camera can be increased by reducing the number of vertical lines output. In Partial Scan mode, the frame rate is determined by the exposure/shutter time plus the time to transmit the image. In free run mode, the exposure starts after the last image is transmitted. In triggered mode, the exposure can be overlapped with the image output but care must be taken to ensure that the exposure end does not occur before the ouput of the previous image.

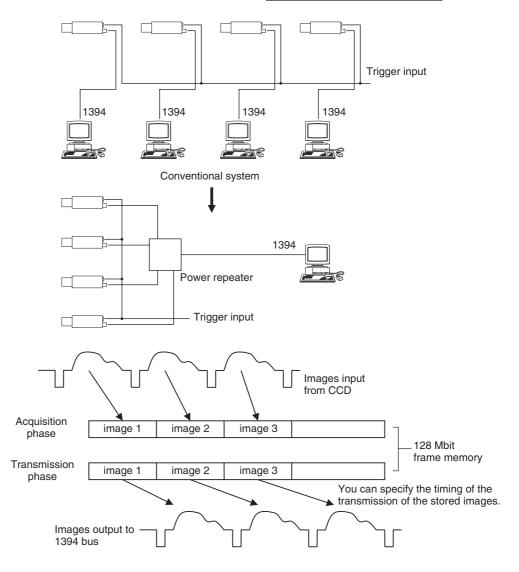
To use the Partial Scan feature, set Format7, Mode0.

In Partial Scan mode, you can select from among Mono8, YUV4:1:1, and YUV4:2:2 as the color coding.

### IIDC Extended Features

Following are vender-unique features, which are not defined by the IIDC standard.

### **Memory Shot**


Memory Shot allows the camera to collect one or more images into on-board image memory without tying up available 1394 bus bandwidth. Normally, a 1394 IIDC camera transmits a new image immediately after the acquisition so the 1394 bus bandwidth is pre-allocated to the camera to ensure deterministic performance. 1394 bus bandwidth is allocated based on resolution and frame rate assigned. Multiple camera configurations frequently demand more bandwidth (or more ISO channels) than available on a single 1394 bus. The user can either reduce the bandwidth required by each cameras by reducing the frame rate or resolution or increase available bandwidth by adding more 1394 busses on one or more computers. Memory Shot offers another alternative to managing the 1394 bus bandwidth in multiple camera configurations. This is especially useful in hardware triggered environments. Multiple cameras can be setup to acquire one or more images simultaneously without consuming any 1394 bus bandwidth. The applications software can setup the multiple cameras on a single 1394 bus on one computer for Memory Shot acquisition, query the camera to verify that the image(s) are in the camera on-board memory, and tell each camera to transmit its stored image(s). These cameras have 128 Mbit of frame memory. It can hold:

1280×960 at YUV4:2:2 is 6 images 1280×960 at YUV4:1:1 is 9 images 1280×960 at MONO8 is 13 images

The number of images (N) that can be holded is defined by the image size and color coding.

N = 16 \* 1024 \* 1024 (byte) / (W \* H \* K) W: image width (pixels) H: image hight (pixels) K: coefficient of color coding

| к   | color coding |  |  |
|-----|--------------|--|--|
| 1   | Mono8/Raw8   |  |  |
| 1.5 | YUV4:1:1     |  |  |
| 2   | YUV4:2:2     |  |  |



### PAINT

This feature enables you to shift the reference point of the White Balance. If you change the parameter of this feature, the white-balance adjustment references to a color other than white.

### **User Memory Area**

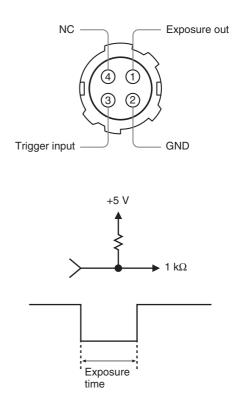
The camera is equipped with 256 bytes of nonvolatile memory to hold information you need. The information is read or written by quadlet. Both Quadlet Read/Write and Block Read/Write transactions are available. The information will be preserved even if the power to the camera is turned off.

# **Non-IIDC Features**

The following features are not defined by the IIDC standard.

### **1394 Bus Synchronization**

Cameras connected to the same bus are automatically synchronized. Specifically, the start of exposure will be the same for all cameras running at the same frame rate.


The DFW-SX910/X710 series and XCD-SX910/X710 series cameras uses the same automatic bus synchronization system. The 1394 bus is a shared resource with finite bandwidth. The number of cameras that can be simultaneously is limited by the ISO bandwidth available (~32 MBytes/sec) and ISO channels (4-8 depending on your computer 1394 interface). Bandwidth is allocated based on the resolution and frame rate selected for the camera. To reduce the bandwidth for a camera, reduce the output image size and/or the frame rate.

For instance, if a camera is to transmit 1280×960 in YUV4:2:2 at 7.5 fps, approximately 18.4 MBytes/sec; more than half the available bandwidth. Reducing the frame rate to 3.75 fps reduces the bandwidth to approximately 9.2 MBytes/sec allowing 3 cameras to transmit simultaneously.

CPU operation timing can cause jitter in the 1394 bus synchronization of approximately 4 microseconds. External hardware (trigger) synchronization can be used to ensure further accuracy. To synchronize cameras on different 1394 busses, use a common hardware trigger to all the cameras.

### **Exposure Out**

A signal that indicates an exposure time is output from pin 1 on the 4-pin connector on the rear panel. When the hardware trigger feature is used, the signal above is not output. The output is the open-corrector type.



The LOW period that is given by an output wave form is an approximate guideline. It does not correspond exactly to the actual exposure time.

# Control

### Camera Command Status Register

This camera complies with the IIDC 1394-based Digital Camera Specification, version 1.30 (hereinafter referred to as IIDC v1.30).

The standards document can be purchased from 1394TA (the 1394 Trade Association). Because it is very helpful in understanding the explanations in this Technical Manual, we recommend that you purchase a copy of IIDC v1.30.

### Memory Map

1394 devices have a 64-bit address space. The upper 10 bits show the bus ID ( $0\sim1023$ ), and the next six bits show the node ID ( $0\sim63$ ). The IIDC standard requires the next 20 bits to be 1.

 I---BusID-- NodeID
 -----Must be 1----- I---Address used by the camera--- 

 bbbbbbbb
 bbbbbbb
 bbnnnnn I
 IIIIIIIII IIIIIIIII IIIII0000
 IIII0000
 00000000
 00000000

The remaining 28 bits can be allocated to the camera as addresses, but in reality, the first 4 bits are fixed at 0, so the largest number of bits that can be allocated to the camera as address space is 24 bits.

The bus and node IDs may be changed if the topology is restructured because of bus reset, so only the least significant 32 address bits are shown in this Technical Manual.

| Address  | Register                           |
|----------|------------------------------------|
| F0000000 | Base address                       |
| F0000400 | ConfigROM area                     |
| F0F00000 | Base addresses for camera commands |
| F0F00000 | CameraInitialize                   |
| F0F00100 | Video Format Inq                   |
| F0F00180 | Video Mode Inq                     |
| F0F00200 | Frame Rate Inq                     |
| F0F002E0 | Format7 CSR Inq                    |
| F0F00400 | Basic Func Inq                     |
| F0F00500 | Feature Element Inq                |
| F0F00600 | Isochronous Control register       |
| F0F0071C | AbsoluteControlCSR Inq for Shutter |
| F0F00800 | FeatureControl                     |
| F0F00970 | AbsoluteControlCSR for Shutter     |
|          |                                    |
| F0F10000 | Format7Mode0 CSR                   |
| F0F30000 | Access Control Register            |
| F0F40000 | Memory Shot control                |
| F0F50000 | User Memory                        |

# ConfigROM

|           | Offset | 0-7  | 8-15 | 16-23 | 24-31 |                        |
|-----------|--------|------|------|-------|-------|------------------------|
| Bus       | 400h   | 04   | 1F   | ROM   | CRC   |                        |
| Info      | 404h   | 31   | 33   | 39    | 34    |                        |
| Block     | 408h   | 20   | FF   | 60    | 00    |                        |
|           | 40ch   | 08   | 00   | 46    | 02    | NodeVendorID/ChipID-Hi |
|           | 410h   | 00   | 0F   | 00    | 01    | ChipID-Lo              |
| Root      | 414h   | 0004 |      | CRC   |       |                        |
| Directory | 418h   | 03   | 08   | 00    | 46    | ModuleVendorID         |
|           | 41ch   | 0C   | 00   | 83    | C0    |                        |
|           | 420h   | 8D   | 00   | 00    | 02    | IndirectOffset         |
|           | 424h   | D1   | 00   | 00    | 04    | UnitDirectoryOffset    |

With the exception of bits 8 to 15 of the 400h offset address field, the length of the entire ConfigROM field is made up of 1Fh Quadlets. So ConfigROM from 400h to 47Fh is 128 bytes.

Offset address 420h and key code 8Dh indicate a NodeUniqueID Leaf offset, but in 1394a-2000, this field has been eliminated. To ensure compatibility with previous models, this field has been retained in this model, but in writing drivers and software applications, be sure to ignore this field. For a NodeUniqueID, use NodeVendorID/ChipID-Hi + ChipID-Lo in BusInfoBlock.

The offset address of UnitDirectory is required to be 424h + 000004h \* 4 = 434h

|           | Offset | 0-7 | 8-15 | 16-23 | 24-31 |                               |
|-----------|--------|-----|------|-------|-------|-------------------------------|
| Unit      | 434h   | 00  | 03   | CF    | RC    |                               |
| Directory | 438h   | 12  | 00   | A0    | 2D    | UnitSpecID                    |
|           | 43Ch   | 13  | 00   | 01    | 02    | UnitSoftwareVersion           |
|           | 440h   | D4  | 00   | 00    | 01    | UnitDependentDirectory Offset |

For offset address 434h, the length of the UnitDirectory is 3 Quadlets. UnitSpecID (00A02Dh) conforms to 1394TA standards. UnitSoftwareVersion (000102h) conforms to the IIDC standard, v 1.30. The offset address of UnitDependentInfo is required to be

440h + 000001h \* 4 = 444h

Control

|           | Offset | 0-7 | 8-15 | 16-23 | 24-31 |                 |
|-----------|--------|-----|------|-------|-------|-----------------|
| Unit      | 444h   | 00  | 03   | CH    | RC    |                 |
| Dependent | 448h   | 40  | 3C   | 00    | 00    | CommandRegsBase |
| Info      | 44ch   | 81  | 00   | 00    | 02    | VendorNameLeaf  |
|           | 450h   | 82  | 00   | 00    | 05    | ModelNameLeaf   |

For offset address 444h, the length of the UnitDependentInfo is 3 Quadlets.

The offset address of VendorNameLeaf is required to be

$$44Ch + 000002h * 4 = 454h$$

CommandRegsBase is the base address of the camera control register.

F0000000h + 3c0000h \* 4 = F0F00000h

The offset address of ModelNameLeaf is required to be

450h + 000005h \* 4 = 464h

#### VendorNameLeaf

|        | Offset | 0-7 | 8-15 | 16-23 | 24-31 |        |
|--------|--------|-----|------|-------|-------|--------|
| Vendor | 454h   | 00  | 03   | CI    | RC    |        |
| Name   | 448h   | 00  | 00   | 00    | 00    |        |
| Leaf   | 44ch   | 00  | 00   | 00    | 00    |        |
|        | 450h   | 53  | 4F   | 4E    | 59    | "SONY" |

For offset address 454h, the length of the VendorNameLeaf field is 3 Quadlets. The subsequent 8 bytes are fixed at 00. After that, the four characters for "SONY" are entered.

#### ModelNameLeaf

|       | Offset | 0-7 | 8-15 | 16-23 | 24-31 |        |
|-------|--------|-----|------|-------|-------|--------|
| Model | 464h   | 00  | 06   | CI    | RC    |        |
| Name  | 468h   | 00  | 00   | 00    | 00    |        |
| Leaf  | 46ch   | 00  | 00   | 00    | 00    |        |
|       | 470h   | 44  | 46   | 57    | 2D    | "DFW-" |
|       | 474h   | 53  | 58   | 39    | 31    | "SX91" |
|       | 478h   | 30  | 20   | 76    | 31    | "0 v1" |
|       | 47Ch   | 2E  | 30   | 32    | 41    | ".02A" |

For offset address 464h, the length of the ModelNameLeaf field is 6 Quadlets. The subsequent 8 bytes are fixed at 00. For the DFW-SX910, the 16 characters "DFW-SX910 v1.02A" come next. For the DFW-X710, the15 characters are "DFW-X710 v1.02A". Model names are subject to change with the upgrade of firmware.

# **Control Base Address**

Every register address is decided based on the base address found in the CommandRegsBase field of ConfigROM. F0F00000h is the control base address on this camera.

### Verifying Supported Video Modes

First, we will find out what video formats are supported.

|           | Data      |           |  |  |  |  |
|-----------|-----------|-----------|--|--|--|--|
| Address   | DFW-SX910 | DFW-X710  |  |  |  |  |
| F0F00100h | E1000000h | C1000000h |  |  |  |  |

We find that the DFW-SX910 supports Format0/1/2/7, and the DFW-X710 supports Format0/1/7.

Next, for each format, we will find out which video modes are supported.

Format0

|           | Data      |           |  |
|-----------|-----------|-----------|--|
| Address   | DFW-SX910 | DFW-X710  |  |
| F0F00180h | 7400000h  | 74000000h |  |

We find video modes 1, 2, 3, and 5 of Format0 are supported.

Format1

|           | Data      |           |  |
|-----------|-----------|-----------|--|
| Address   | DFW-SX910 | DFW-X710  |  |
| F0F00184h | B4000000h | B4000000h |  |

We find video modes 0, 2, 3 and 5 of Format1 are supported.

Format2 (DFW-SX910 only)

|           | Data      |          |  |
|-----------|-----------|----------|--|
| Address   | DFW-SX910 | DFW-X710 |  |
| F0F00188h | A0000000h | -        |  |

We find video modes 0 and 2 of Format2 are supported.

Format7

|   |          | Data      |          |
|---|----------|-----------|----------|
| A | Address  | DFW-SX910 | DFW-X710 |
| F | 0F0019Ch | C0000000h | 8000000  |

We find that the DFW-SX910 supports video modes 0 and 1 of Format7, and the DFW-X710 supports video mode 0 of Format7.

Next, for each video mode, we will find out which frame rates are supported.

|                | Data      |           |
|----------------|-----------|-----------|
| Address        | DFW-SX910 | DFW-X710  |
| F0F00204h      | 6000000h  | 7000000h  |
| (Format0Mode1) |           |           |
| F0F00208h      | 6000000h  | 7000000h  |
| (Format0Mode2) |           |           |
| F0F0020Ch      | 6000000h  | 7000000h  |
| (Format0Mode3) |           |           |
| F0F00214h      | 6000000h  | 70000000h |
| (Format0Mode5) |           |           |
| F0F00220h      | 6000000h  | 7000000h  |
| (Format1Mode0) |           |           |
| F0F00228h      | 20000000h | 30000000h |
| (Format1Mode2) |           |           |
| F0F0022Ch      | E0000000h | F0000000h |
| (Format1Mode3) |           |           |
| F0F00234h      | E0000000h | F0000000h |
| (Format1Mode5) |           |           |
| F0F00240h      | E0000000h | _         |
| (Format2Mode0) |           |           |
| F0F00248h      | E0000000h | _         |
| (Format2Mode2) |           |           |

Based on the data above, the formats, modes, and frame rates supported are shown in the tables on the next page.

#### Video modes supported (except for Format7)

#### DFW-SX910

|        |      |                   |              |    | Frame | e Rate |       |
|--------|------|-------------------|--------------|----|-------|--------|-------|
| Format | Mode | Image Size        | Color Coding | 15 | 7.5   | 3.75   | 1.875 |
| 0      | 1    | $320 \times 240$  | YUV4:2:2     |    | 0     | 0      | _     |
|        | 2    | $640 \times 480$  | YUV4:1:1     |    | 0     | 0      | _     |
|        | 3    | $640 \times 480$  | YUV4:2:2     |    | 0     | 0      | _     |
|        | 5    | $640 \times 480$  | Mono8        |    | 0     | 0      | _     |
| 1      | 0    | $800 \times 600$  | YUV4:2:2     |    | 0     | 0      | _     |
|        | 2    | 800 × 600         | Mono8        |    | 0     | -      | _     |
|        | 3    | $1024 \times 768$ | YUV4:2:2     |    | 0     | 0      | 0     |
|        | 5    | $1024 \times 768$ | Mono8        |    | 0     | 0      | 0     |
| 2      | 0    | $1280 \times 960$ | YUV4:2:2     |    | 0     | 0      | 0     |
|        | 2    | $1280 \times 960$ | Mono8        |    | 0     | 0      | 0     |

#### **DFW-X710**

|        |      |                   |              |    | Frame | e Rate |       |
|--------|------|-------------------|--------------|----|-------|--------|-------|
| Format | Mode | Image Size        | Color Coding | 15 | 7.5   | 3.75   | 1.875 |
| 0      | 1    | $320 \times 240$  | YUV4:2:2     | 0  | 0     | 0      | _     |
|        | 2    | $640 \times 480$  | YUV4:1:1     | 0  | 0     | 0      | _     |
|        | 3    | $640 \times 480$  | YUV4:2:2     | 0  | 0     | 0      | _     |
|        | 5    | $640 \times 480$  | Mono8        | 0  | 0     | 0      | _     |
| 1      | 0    | $800 \times 600$  | YUV4:2:2     | 0  | 0     | 0      | _     |
|        | 2    | $800 \times 600$  | Mono8        | 0  | 0     | _      | _     |
|        | 3    | $1024 \times 768$ | YUV4:2:2     | 0  | 0     | 0      | 0     |
|        | 5    | $1024 \times 768$ | Mono8        | 0  | 0     | 0      | 0     |

# Video Mode Settings

Select the video mode you want to use from the tables, and make the required settings.

As examples, the register settings for Format2, Mode0, and a frame rate of 7.5 fps for the DFW-SX910, and Format1, Mode3, and a frame rate of 15 fps for the DFW-X710, are shown.

In addition, an isochronous transfer speed of 400 Mbps and isochronous channel 0 are used in these examples. Normally, set the isochronous transfer speed to 400 Mbps.

When multiple cameras are used simultaneously, set different isochronous channels for each one.

|                                        | Data      |           |  |
|----------------------------------------|-----------|-----------|--|
| Address                                | DFW-SX910 | DFW-X710  |  |
| F0F00600h<br>(Frame Rate)              | 40000000h | 60000000h |  |
| F0F00604h<br>(Video Mode)              | 00000000h | 60000000h |  |
| F0F00608h<br>(Video Format)            | 40000000h | 20000000h |  |
| F0F0060ch<br>(IsoChannel/<br>IsoSpeed) | 02000000h | 02000000h |  |

### Starting/Stopping Video Transfer (Continuous Shot)

In the device driver, after the preparations for receiving isochronous data are made, video transfer starts when the following commands are issued.

| Address   | Data      |
|-----------|-----------|
| F0F00614h | 80000000h |

When the following command is issued, video transfer stops.

| Address   | Data      |
|-----------|-----------|
| F0F00614h | 00000000h |

### One Shot and Multi Shot

This camera supports both One Shot and Multi Shot commands. With a One Shot command, after outputting just one single-frame image, the camera enters an "idling" state. With a Multi Shot command, the camera enters the "idling" state after outputting exactly the specified number of images.

One Shot

| Address   | Data     |
|-----------|----------|
| F0F0061Ch | 8000000h |

Multi Shot

| Address   | Data      |
|-----------|-----------|
| F0F0061Ch | 4000nnnnh |

nnnn indicates the number of frames to be output. You can specify any number between  $0001h \sim FFFFh$  (1~65535). If 0000h is specified, you can think of it as 1 being set instead.

Execution of Continuous Shot, One Shot, and Multi Shot are prioritized as follows. When a command with higher priority is being executed, one with a lower priority is ignored.

| Priority | Command         |
|----------|-----------------|
| 1        | Continuous Shot |
| 2        | One Shot        |
| 3        | Multi Shot      |

## Memory Channel Operation

#### Save

# Selecting the Memory Channel used to save the data

| Address   | Data      | Operation     |
|-----------|-----------|---------------|
| F0F00620h | 10000000h | Selects Ch 1. |
|           | 20000000h | Selects Ch 2. |

#### Saving data

| Address   | Data      | Operation                  |
|-----------|-----------|----------------------------|
| F0F00618h | 80000000h | Saves the current setting. |

#### Load

| Address   | Data      | Operation                              |
|-----------|-----------|----------------------------------------|
| F0F00624h | 00000000h | Loads the default settings.            |
|           | 1000000h  | Loads the setting information in Ch 1. |
|           | 20000000h | Loads the setting information in Ch 2. |

The settings of the camera features and the video mode can be stored.

The camera memorizes the channel most recently used to read out the setting information using nonvolatile memory. Then, the information in that channel will be loaded when the power is turned on the next time. The video mode settings are loaded only when the power is turned on. If you read out Memory Channels during operation, only the settings of the camera features are loaded.

The value of Pan/Tilt depends on the video mode settings. If you change the video mode after carrying out the Save command, the value of Pan/Tilt may not be loaded correctly.

# Feature Controls (Complies with the IIDC Standard)

This camera supports the following features.

| Brightness     | Makes fine adjustment of the black level possible.                                                                                                                                                                                                                      |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Auto Exposure  | Controls the target video level value when Shutter/Gain is set to Auto.                                                                                                                                                                                                 |
| Sharpness      | Adjusts the picture sharpness.                                                                                                                                                                                                                                          |
| White Balance  | Adjusts the color balance of the camera to ensure that a white subject appears white in the video image.                                                                                                                                                                |
| Hue            | Adjusts color tones.                                                                                                                                                                                                                                                    |
| Saturation     | Adjusts color intensity.                                                                                                                                                                                                                                                |
| Gamma          | Sets a gamma curve.                                                                                                                                                                                                                                                     |
| Shutter        | Controls the exposure time. To control this feature, you can use both relative control values from 1/100,000 of a second to 16 seconds, allocated from 3 to 1150, and absolute value control, with values from 1/100,000 of a second to 17.5 seconds, set continuously. |
| Gain           | Controls the gain in the range from 0 dB to 18 dB. The unit of the adjustment is approximately 0.035 dB.                                                                                                                                                                |
| Trigger        | Controls external triggers. This feature supports Trigger Mode 0 and 1. A software trigger feature is also supported.                                                                                                                                                   |
| Pan/Tilt       | Sets CCD output range (both horizontal (Pan) and vertical (Tilt)). The video mode predetermines the variable range. Not available in Partial Scan mode (Format7/Mode0).                                                                                                 |
| Optical Filter | Sets a preset value for White Balance. Setting values of 3200 K and 5600 K are available.                                                                                                                                                                               |

Before sending a command, check the predetermined variable range and check whether the feature supports Auto mode.

considerably depending on the video mode. After switching video mode, check the variable range for Pan/Tilt.

Note that variable ranges for Pan/Tilt differ

| Address         | Data      | Bit*1) |                                     |
|-----------------|-----------|--------|-------------------------------------|
| F0F00500h       | 8900007Fh | 0      | This feature exists.                |
| (Brightness)    |           | 4      | The value can be read out.          |
| -               |           | 7      | Manual setting can be selected.     |
|                 |           | 8-19   | Min. 0                              |
|                 |           | 20-31  | Max. 127                            |
| F0F00504h       | 8905A073h | 0      | This feature exists.                |
| (Auto Exposure) |           | 4      | The value can be read out.          |
|                 |           | 7      | Manual setting can be selected.     |
|                 |           | 8-19   | Min. 90                             |
|                 |           | 20-31  | Max. 115                            |
| F0F00508h       | 8900007h  | 0      | This feature exists.                |
| (Sharpness)     |           | 4      | The value can be read out.          |
|                 |           | 7      | Manual setting can be selected.     |
|                 |           | 8-19   | Min. 0                              |
|                 |           | 20-31  | Max. 7                              |
| F0F0050Ch       | 9B700900h | 0      | This feature exists.                |
| (White Balance) |           | 3      | One Push Auto mode can be selected. |
|                 |           | 4      | The value can be read out.          |
|                 |           | 6      | Auto setting can be selected.       |
|                 |           | 7      | Manual setting can be selected.     |
|                 |           | 8-19   | Min. 1792                           |
|                 |           | 20-31  | Max. 2304                           |
| F0F00510h       | 890530ADh | 0      | This feature exists.                |
| (Hue)           |           | 4      | The value can be read out.          |
|                 |           | 7      | Manual setting can be selected.     |
|                 |           | 8-19   | Min. 83                             |
|                 |           | 20-31  | Max. 173                            |
| F0F00514h       | 890001FFh | 0      | This feature exists.                |
| (Saturation)    |           | 4      | The value can be read out.          |
|                 |           | 7      | Manual setting can be selected.     |
|                 |           | 8-19   | Min. 0                              |
|                 |           | 20-31  | Max. 511                            |
| F0F00518h       | 89080082h | 0      | This feature exists.                |
| (Gamma)         |           | 4      | The value can be read out.          |
|                 |           | 7      | Manual setting can be selected.     |
|                 |           | 8-19   | Min. 128                            |
|                 |           | 20-31  | Max. 130                            |
| F0F0051Ch       | CB00347Eh | 0      | This feature exists.                |
| (Shutter)       |           | 1      | Absolute value control possible     |
|                 |           | 4      | The value can be read out.          |
|                 |           | 6      | Auto setting can be selected.       |
|                 |           | 7      | Manual setting can be selected.     |
|                 |           | 8-19   | Min. 3                              |
|                 |           | 20-31  | Max. 1150                           |

\*1) According to the IEEE 1394 specifications, the most significant bit is shown as 0.

| Address          | Data      | Bit*1) |                                          |
|------------------|-----------|--------|------------------------------------------|
| F0F00520h        | 8B046227h | 0      | This feature exists.                     |
| (Gain)           |           | 4      | The value can be read out.               |
|                  |           | 6      | Auto setting can be selected.            |
|                  |           | 7      | Manual setting can be selected.          |
|                  |           | 8-19   | Min. 70                                  |
|                  |           | 20-31  | Max. 551                                 |
| F0F00530h        | 8C81C000h | 0      | This feature exists.                     |
| (Trigger)        |           | 4      | The value can be read out.               |
|                  |           | 5      | This feature can be switched ON and OFF. |
|                  |           | 8      | Trigger Source0 exists.*2)               |
|                  |           | 15     | Software Trigger Mode exists.*2)         |
|                  |           | 16     | Trigger Mode0 exists.                    |
|                  |           | 17     | Trigger Model exists.                    |
| F0F00584h        | 89****    | 0      | This feature exists.                     |
| (Pan)            |           | 4      | The value can be read out.               |
| F0F00584h        |           | 7      | Manual setting can be selected.          |
| (Tilt)           |           | 8-19   | Min. (Depends on the video mode.)        |
|                  |           | 20-31  | Max. (Depends on the video mode.)        |
| F0F0058Ch        | 8900001h  | 0      | This feature exists.                     |
| (Optical Filter) |           | 4      | The value can be read out.               |
|                  |           | 7      | Manual setting can be selected.          |
|                  |           | 8-19   | Min. 0                                   |
|                  |           | 20-31  | Max. 1                                   |

 $^{\ast 1)}$  According to the IEEE 1394 specifications, the most significant bit is shown as 0.  $^{\ast 2)}$  These features comply with IIDC v1.31.

Actual control can be carried out by setting registers from F0F00800 onward.

ddd indicates the control value expressed as a 12 bit hexadecimal number.

xxx indicates that any setting made will be ignored.

#### **Brightness control**

| Address  | Data     |                          |
|----------|----------|--------------------------|
| F0F00800 | 82000ddd | Adjusts the black level. |

#### **AE reference control**

| Address  | Data     |                              |
|----------|----------|------------------------------|
| F0F00804 | 82000ddd | Sets the AE reference value. |

#### **Sharpness control**

| Address  | Data     |                                |
|----------|----------|--------------------------------|
| F0F00808 | 82000ddd | Adjusts the picture sharpness. |
|          |          | 0 (Soft)↔7 (Sharp)             |

#### White Balance control

| Address  | Data     |                                                                                              |
|----------|----------|----------------------------------------------------------------------------------------------|
| F0F0080C | 82uuuvvv | Adjusts White Balance using relative<br>values.<br>uuu: Blue component<br>vvv: Red component |
|          | 83xxxxxx | Sets Auto White Balance.                                                                     |
|          | 86xxxxxx | Adjusts White Balance automatically<br>once, then the feature turns to manual<br>mode.       |

#### **Hue control**

| Address  | Data     |                      |
|----------|----------|----------------------|
| F0F00810 | 82000ddd | Adjusts color tones. |

#### **Saturation control**

| Address  | Data     |                          |
|----------|----------|--------------------------|
| F0F00814 | 82000ddd | Adjusts color intensity. |

#### Gamma control

| Address  | Data     |                                 |
|----------|----------|---------------------------------|
| F0F00818 | 82000ddd | Sets the gamma compensation.    |
|          |          | 82000080: Deactivates the gamma |
|          |          | feature.                        |
|          |          | 82000081: Activates the gamma   |
|          |          | feature (gamma curve 1).        |
|          |          | 82000082: Activates the gamma   |
|          |          | feature (gamma curve 2).        |

#### Shutter (exposure time) control

| Address        | Data            |                                                         |
|----------------|-----------------|---------------------------------------------------------|
| F0F0081C       | 82000ddd        | Controls shutter using the manually set relative value. |
|                | 83000xxx        | Sets Shutter to AUTO.                                   |
|                | C2000xxx        | Controls shutter using the absolute control value.      |
| F0F00970       | Indicates an    | After F0F0081C has been set to                          |
| (See page 26.) | arbitrary value | Absolute value control, set exposure                    |
|                | using a 32-bit  | time using this register.                               |
|                | floating point  |                                                         |
|                | number.         |                                                         |

#### Gain control

| Address  | Data     |                     |
|----------|----------|---------------------|
| F0F00820 | 82000ddd | Sets Gain manually. |
|          | 83000xxx | Sets Gain to AUTO.  |

#### **Trigger control**

| Address   | Data     |                                                                                                  |
|-----------|----------|--------------------------------------------------------------------------------------------------|
| F0F00830  | 82000000 | Sets Hardware Trigger Mode0.                                                                     |
|           | 82010000 | Sets Hardware Trigger Mode1.                                                                     |
|           | 82E00000 | Sets Software Trigger Mode0. *                                                                   |
|           | 82E10000 | Sets Software Trigger Mode1. *                                                                   |
| F0F0062C* | 8000000  | Outputs a software trigger.<br>In Trigger Mode0, automatically reset<br>to 0 when exposure ends. |
|           | 00000000 | In Trigger Mode1, ends exposure if "0" is set.                                                   |

\* These features comply with IIDC v1.31.

#### Pan/Tilt control

| Address  | Data     |                     |
|----------|----------|---------------------|
| F0F00884 | 82000ddd | Sets Pan manually.  |
| F0F00888 | 82000ddd | Sets Tilt manually. |

#### **Optical Filter control**

| Address  | Data     |                                      |
|----------|----------|--------------------------------------|
| F0F0088C | 82000ddd | Sets preset value for White Balance. |
|          |          | 82000000: value for 3200 K           |
|          |          | 82000001: value for 5600 K           |

# The formula for the absolute value shutter control register address

# Absolute value shutter control CSR offset address

| Address  | Data     |                                    |
|----------|----------|------------------------------------|
| F0F0071C | 003C025C | Absolute value shutter control CSR |
|          |          | offset                             |

The register address for absolute value shutter control is given by the following formula.

F000000h + 003C025Ch \* 4 = F0F00970h

## **Feature Controls (IIDC Extended)**

This camera supports the following extended features.

| PAINT       | Sets the reference point of the White Balance to other than white.                                                                       |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Memory Shot | Stores an image on the frame memory and outputs it asynchronously.                                                                       |
| User Memory | A 256-byte memory area reserved for users. The information in this area will be preserved even if the power to the camera is turned off. |

To control these extended features (Vendor Unique Features), use the Access Control Register defined by the IIDC standard.

#### The formula for the ACR offset address

First, we will find out whether the camera supports Vender Unique Features.

| F0F00400h        | 80001802h | 0     | Vender Unique Features are supported. |
|------------------|-----------|-------|---------------------------------------|
| (BASIC_FUNC_INQ) |           | 19    | One Shot can be transmitted.          |
|                  |           | 20    | Multi Shot can be transmitted.        |
|                  |           | 28-31 | 2: Memory channel 2                   |

| F0F00480h              | 003CC000h | ACR offset |
|------------------------|-----------|------------|
| (Advanced_Feature_Inq) |           |            |

The Access Control Register address is given by the following formula.

F0000000h + 003CC000h \* 4 = F0F30000h

### **PAINT Control**

Issue the following commands using BlockWrite or QuadletWrite.

| F0F30000h | <= 08004600h |
|-----------|--------------|
| F0F30004h | <= 0002FFFFh |
| F0F30008h | <= UUUUVVVVh |

Specify UUUU and VVVV within the range from -4 to +4 using 16-bit signed integers.

The values which you set will be preserved even if the power to the camera is turned off. To restore the initial value, set UUUU and VVVV to 0.

### **Memory Shot Control**

The following instructions are provided to allow you to operate the camera in the external synchronization mode.

- **1** Stop the video transmission.
- **2** Set camera features, such as video mode, frame rate, etc.

If you change the image size to a smaller one, a higher frame rate will be available.

**3** Issue the following commands using BlockWrite or QuadletWrite.

| F0F30000h | <= 08004600h |
|-----------|--------------|
| F0F30004h | <= 0010FFFFh |
| F0F30008h | <= 80000000h |

Then, the Memory Shot feature is activated.

4 Set the external trigger feature to ON.

F0F00830h <= 82000000h

**5** Issue the start capturing command.

```
F0F40000h <= 0100nnnh
```

nnnn indicates the number of frames to be captured. When the specified number of frames is captured or the memory fills up with data, the capture mode will be released. To find the number of the frames captured, read out F0F40000h. The end flag shows that the capture mode has been released.

0101000Ah When the mode is released after 10 frames are captured, bit 16 indicates an end flag.

6 Set the external trigger feature to OFF.

F0F00830h <= 80000000h

**7** Issue the video start command.

The camera outputs the frames in the memory area and then enters the "idling" state. The frames are output sequentially in the captured order. You cannot specify a frame to be output on a random basis. **8** If output ends, issue the video stop command. This step cannot be skipped.

One procedure is completed. You can perform the operation from step **4** over again.

## To exit from the Memory Shot mode and return to the normal mode

Issue the following commands using BlockWrite or QuadletWrite.

F0F30000h <= 08004600h F0F30004h <= 0010FFFFh F0F30008h <= 00000000h

# If you perform the procedure with a camera of which the external Trigger Mode is set to OFF

Capturing starts at the moment you issue the command in step **5**.

### **User Memory Control**

Issue the following commands using BlockWrite or QuadletWrite.

| F0F30000h | <= 08004600h |
|-----------|--------------|
| F0F30004h | <= 0011FFFFh |
| F0F30008h | <= 8000000h  |

The user memory area is opened. User Memory is mapped to F0F50000h-F0F500FFh.

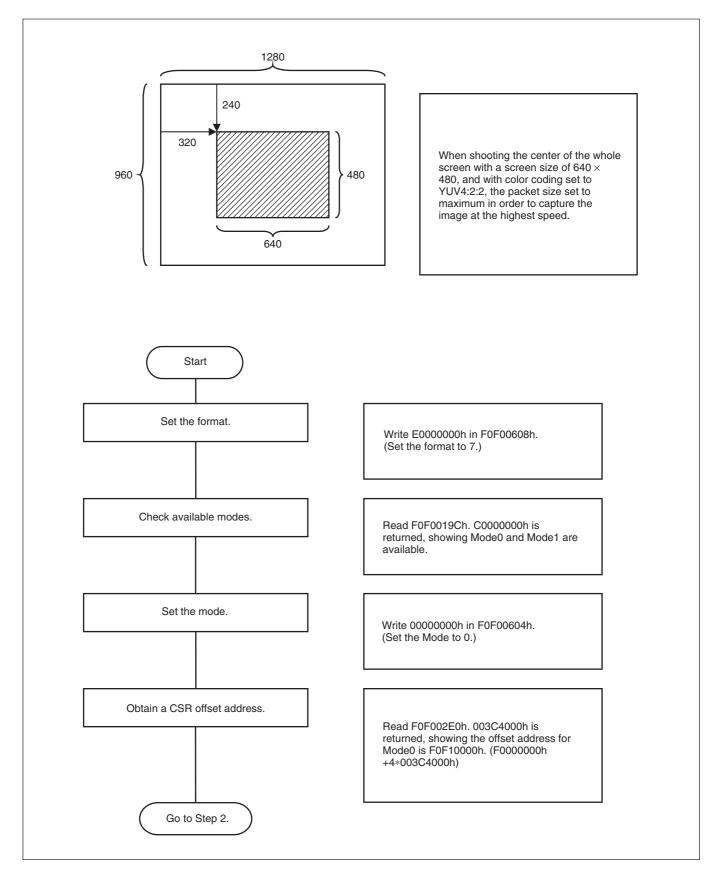
QuadletRead/Write and BlockRead/Write are available.

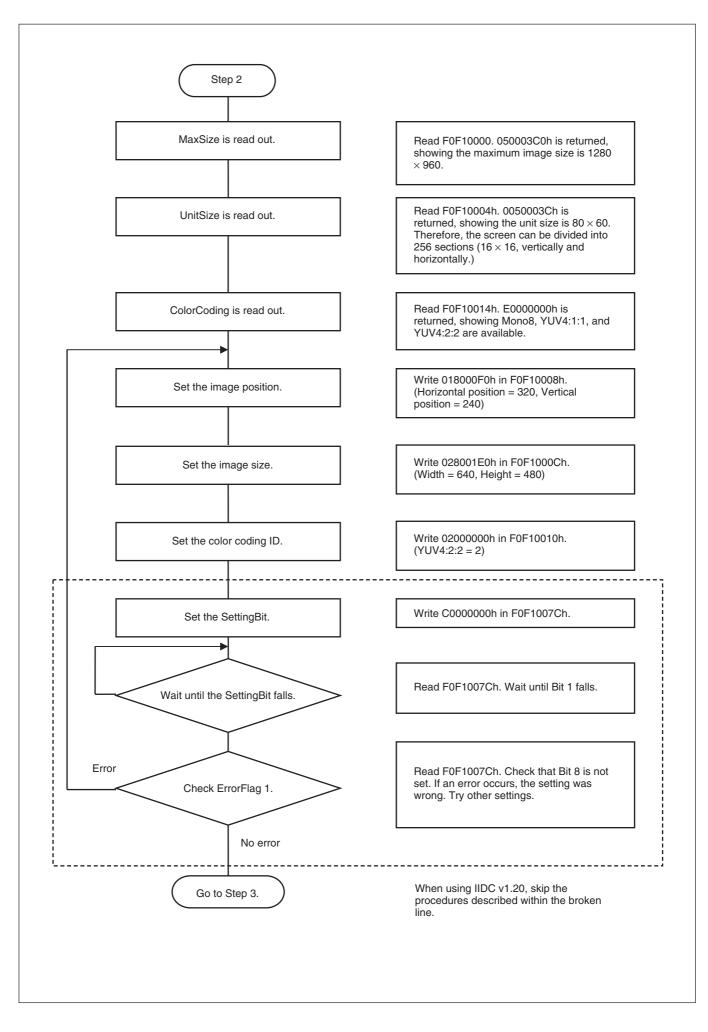
If you issue the following commands using BlockWrite or QuadletWrite, the user memory area is locked and will be inaccessible.

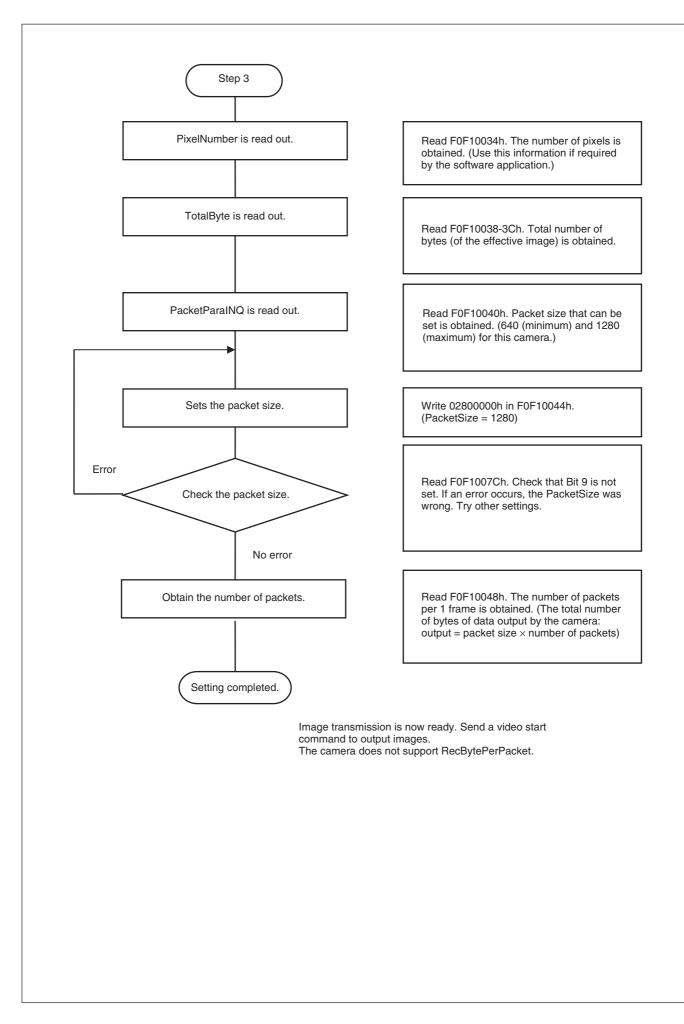
| F0F30000h | <= 08004600h |
|-----------|--------------|
| F0F30004h | <= 0011FFFFh |
| F0F30008h | <= 00000000h |

#### Notes on ACR access

The Access Control Register is managed by the timeout control. A series of commands must be completed within a time-out duration. The time-out duration is specified using the ACR access commands.


F0F30000h <= 08004600h Access control key (32-bit) F0F30004h <= 0011FFFFh Access control key (16-bit) + 'F' + time-out (12-bit) F0F30008h <= 8000000h Control commands


Time-out duration is specified using 12-bit values, and the unit is 1 ms. FFF indicates 4095 ms.


# **Partial Scan Operations**

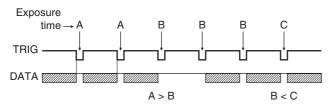
Partial scan can be set using either the SettingBit or IIDC v1.20 interchange.

An example of the setting procedure (In the case of a DFW-SX910)








# Appendix

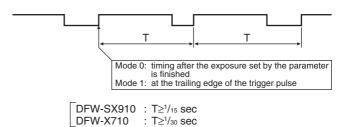
### Notes on the Camera Operations

#### 1. If a Frame rate decrease.

Frame rate may decrease depending on your shutter settings.

a. When a series of images is output, the instant when the exposure time is shorter than one frame, and the exposure time setting is shortened using the shutter.




In this case, the camera tends to skip 1 frame image, resulting in a decrease in the frame rate. Keep this in mind when using an application that switches exposure time frequently.

b. With a long exposure

In long exposure mode, the exposure time is set longer than the image transmission cycle. In this case, frame rate decreases according to the exposure time.

#### 2. When using Trigger Mode

When this camera is set to accept a trigger at the fastest possible timing, it can accept overlap of the next trigger signal in the midst of video transmission. For this reason, a trigger inhibition period is not available. Thus, if a trigger signal is input before the CCD can change to the state where it can accept exposures, multiple exposures can occur, and it cannot capture the correct image. Make sure that the following conditions are met when the trigger is activated. (However, partial activation can be used if the following conditions are exceeded. Refer to the table on pages 37 and 38.)



#### 3. When AE (Auto Exposure) is not available

The camera loads the AE function that controls Gain and Shutter automatically. However, the function works properly in the following standard settings only.

| Standard settings |                     |
|-------------------|---------------------|
| DFW-SX910         | Video Format: 2     |
|                   | Video Mode: 0       |
|                   | Frame Rate: 7.5 fps |
|                   | Trigger: OFF        |
| DFW-X710          | Video Format: 1     |
|                   | Video Mode: 3       |
|                   | Frame Rate: 15 fps  |
|                   | Trigger: OFF        |

When other modes are set, activating the AE function is possible, however, normal operation of the function is not guaranteed.

In Trigger Mode—AE works properly when the video format is set to the standard setting and the trigger cycle is set to the same as that of the video format.

### 4. Auto shutter control and absolute value shutter control

The auto shutter control function cannot be used in the Absolute value control mode. When Shutter is set to Auto, the Absolute value control mode is automatically canceled.

#### 5. Issues to be considered with partial activation

With partial activation, high-speed operation of the CCD occurs.

If strong light comes into the image at the same time, there may be some influence at the edges of the image. In such a case then, adjust the lens so that only the appropriate amount of light is allowed.

### 6. About the address range available for BlockWrite operations

The camera performs BlockWrite operations against consecutive registers. However, the range of the addresses stored in these registers are limited.

| Available address ranges for<br>BlockWrite operations | Functions                                                                                              |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| F0F00600h – F0F00614h                                 | Frame rate/Video mode/Video<br>format/Isochronous channel/<br>Isochronous speed/<br>Isochronous_Enable |
| F0F00800h - F0F008fCh                                 | Feature control                                                                                        |
| F0F30000h - F0F30008h                                 | ACR                                                                                                    |
| F0F50000h - F0F500FCh                                 | User memory                                                                                            |

If BlockWrite operations are performed outside the ranges listed above, an address error will occur.

Meanwhile, the camera can perform BlockRead operations for any sequence of consecutive registers even though the registers are not available for BlockWrite operations.

In Format7 CSR, for example, BlockWrite operations are prohibited because Format7 CSR requires a process for setting the register. However, BlockRead is possible in Format7 CSR.

#### 7. Note on the isochronous control register

The BlockWrite operations are available in the range F0F00600h to F0F00614h. However, setting the video mode in this range is not recommended because it may influence the variable range available for the features. Following the process listed below is recommended for setting the isochronous control register.

Set the isochronous channel/isochronous speed

|                              | (F0F0060Ch)              |
|------------------------------|--------------------------|
| Set the video format         | (F0F00608h)              |
| Set the video mode           | (F0F00604h)              |
| Set the frame rate           | (F0F00600h)              |
| Confirm the variable range   | for the various features |
|                              | (F0F00500-F0F005FCh)     |
| Set the features (as needed) | (F0F00800-F0F008FCh)     |
| Prepare for video data captu | ıre                      |
| Video start                  | (F0F00614h)              |

#### 8. Converting Y/Cr/Cb to R/G/B

The camera outputs digital Y/Cr/Cb data. To convert the digital Y/Cr/Cb data to R/G/B data, use following formula.

R≈1.4022Cr+Y B≈1.7710Cb+Y G≈Y-0.7144Cr-0.3457Cb

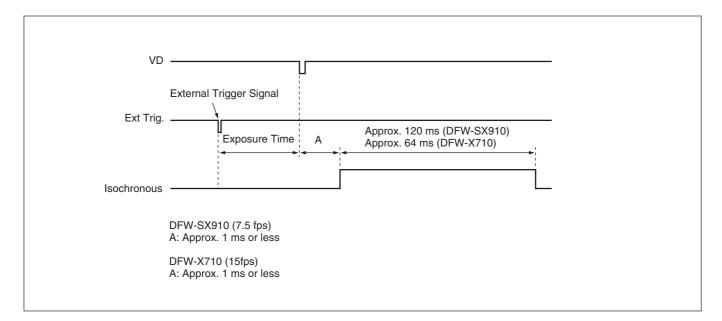
#### 9. Timing of the change in feature setting

The change in feature setting will take effect when the next exposure starts. When you change the shutter setting during a long exposure, you need to note that the change in shutter setting does not cancel the current exposure. The current exposure will complete with the previous shutter setting.

If you intend to start the exposure with a new shutter setting immediately, either stop the output, then change the setting and start the output again, or change the setting, then stop the output and start it again.

### **10.** Timing of the video transmission command and that of the output

In Continuous Shot and Multi Shot modes, the bus synchronization system works automatically. Therefore, the timing of the acceptance of a command does not synchronize with that of the output. On the other hand, in One Shot mode or long exposure mode, the bus synchronization system does not work. Therefore, the camera starts the exposure immediately after the video transmission command is accepted, and the video will be output when the exposure is complete.


# Timing Between External Trigger Signal and Video Signal Output

When the Trigger Mode is set to 0, the timing will be as follows.

After the exposure time is set by the Shutter command (CSR F0F0081Ch), VD pulses will be generated inside the camera.

Images will be isochronously output after the A period from the falling edge of the VD.

(The following figure shows an example where the frame rate is 7.5 fps for the DFW-SX910, and 15 fps for the DFW-X710.)



The timing when the Trigger Mode is set to 1 is the same as above. In this case, the exposure time is defined by the Trigger pulse width.

# **Specifications**

| _                     |                                                       |
|-----------------------|-------------------------------------------------------|
| Image sensor          |                                                       |
| DFW-SX910             | <sup>1</sup> / <sub>2</sub> -type progressive scan IT |
|                       | transfer CCD                                          |
| DFW-X710              | <sup>1</sup> / <sub>3</sub> -type progressive scan IT |
|                       | transfer CCD                                          |
| Number of effective p | •                                                     |
| DFW-SX910             | Approx. 1,450,000                                     |
|                       | $1392 (H) \times 1040 (V)$                            |
| DFW-X710              | Approx. 800,000                                       |
|                       | 1034 (H) × 779 (V)                                    |
| Unit cell size        | $4.65 \mu m (\text{H}) \times 4.65 \mu m (\text{V})$  |
| Interface format      | IEEE1394–1995                                         |
| Transfer speed        | 400/200 Mbps                                          |
| Protocol              | IIDC 1394-based Digital                               |
|                       | Camera Specification Version                          |
|                       | 1.30 Compliant                                        |
| Image format (fixed s |                                                       |
| DFW-SX910             | 1280 × 960 YUV (4:2:2)/Mono8                          |
|                       | 1024 × 768 YUV (4:2:2)/Mono8                          |
|                       | 800 × 600 YUV (4:2:2)/Mono8                           |
|                       | 640×480 YUV (4:2:2/4:1:1)/                            |
|                       | Mono8                                                 |
|                       | 320 × 240 YUV (4:2:2)                                 |
| DFW-X710              | 1024 × 768 YUV (4:2:2)/Mono8                          |
|                       | $800 \times 600$ YUV (4:2:2)/Mono8                    |
|                       | $640 \times 480$ YUV (4:2:2/4:1:1)/                   |
|                       | Mono8                                                 |
|                       | $320 \times 240$ YUV (4:2:2)                          |
| Frame rate (depends)  |                                                       |
| DFW-SX910             | 7.5 to 1.875 fps                                      |
| DFW-X710              | 15 to 1.875 fps                                       |
| Image format (Forma   | <u> </u>                                              |
| DFW-SX910             | 1280 × 960 YUV (4:2:2/4:1:1)/                         |
| DI W 5/1/10           | Mono8                                                 |
| DFW-X710              | 1024 × 768 YUV (4:2:2/4:1:1)/                         |
|                       | Mono8                                                 |
| Partial scan function | $16 \times 16$ (256 sections)                         |
| Lens mount            | C-mount                                               |
| Flange back           | 17.526 mm                                             |
| Minimum illuminatio   |                                                       |
|                       | 20 lx (F0.95, Gain: +18 dB)                           |
| White balance         | One Push/ATW/preset (3200 K,                          |
| white balance         | 5600 K)/manual                                        |
| Hue                   | Adjustable                                            |
| Saturation            | Adjustable                                            |
| Brightness            | Adjustable                                            |
| Gamma                 | Variable                                              |
| CCD Iris              | ON/OFF                                                |
|                       | 01.0011                                               |

| Shutter                | 1/100,000 to 17.5 s                        |
|------------------------|--------------------------------------------|
| Shatter                | (Absolute value control                    |
|                        | possible)                                  |
| Gain                   | Auto/Manual (0 to +18 dB)                  |
| External trigger shutt |                                            |
|                        | Available (Trigger Mode0/1)                |
| Partial scan function  |                                            |
| DFW-SX910              |                                            |
|                        | $64 (H) \times 48 (V)$                     |
| Power supply/Power     |                                            |
| 11 5                   | DC +8 to +30 V (from                       |
|                        | IEEE1394 cable)                            |
| Power consumption      | 3.5 W (12 V)                               |
| Operating temperatur   |                                            |
|                        | -5 to +45°C                                |
| Storage temperature    | $-20 \text{ to } +60^{\circ}\text{C}$      |
| Operating relative hu  |                                            |
|                        | 20 to 80% (No condensation)                |
| Storage relative humi  | dity                                       |
| -                      | 20 to 95% (No condensation)                |
| Vibration resistance   | 10 G (20 to 200 Hz, 20 minutes             |
|                        | for each direction-X, Y, Z)                |
| MTBF                   | 59549 Hrs (Approx. 6.8 years)              |
| Shock resistance       | 70 G                                       |
| Dimensions             | 44 (W) $\times$ 33 (H) $\times$ 116 (D) mm |
| Mass                   | 250 g                                      |
| Accessories            | IEEE1394 cable (1)                         |
|                        | Lens mount cap (1)                         |
|                        | Operating Instructions (1)                 |
|                        |                                            |

### Video modes supported

#### DFW-SX910

#### **Fixed format**

|        |      |                   |              | Frame Rate |     |      |       |
|--------|------|-------------------|--------------|------------|-----|------|-------|
| Format | Mode | Image Size        | Color Coding | 15         | 7.5 | 3.75 | 1.875 |
| 0      | 1    | $320 \times 240$  | YUV4:2:2     |            | 0   | 0    | -     |
|        | 2    | $640 \times 480$  | YUV4:1:1     |            | 0   | 0    | -     |
|        | 3    | $640 \times 480$  | YUV4:2:2     |            | 0   | 0    | -     |
|        | 5    | $640 \times 480$  | Mono8        |            | 0   | 0    | -     |
| 1      | 0    | $800 \times 600$  | YUV4:2:2     |            | 0   | 0    | -     |
|        | 2    | $800 \times 600$  | Mono8        |            | 0   | _    | _     |
|        | 3    | $1024 \times 768$ | YUV4:2:2     |            | 0   | 0    | 0     |
|        | 5    | $1024 \times 768$ | Mono8        |            | 0   | 0    | 0     |
| 2      | 0    | $1280 \times 960$ | YUV4:2:2     |            | 0   | 0    | 0     |
|        | 2    | $1280 \times 960$ | Mono8        |            | 0   | 0    | 0     |

#### Free format

| Format | Mode | Image Size | Color Coding | Partial Scan | Frame Rate    |
|--------|------|------------|--------------|--------------|---------------|
| 7      | 0    | 1280×960   | Mono8        | O (16×16)    | Not specified |
|        | 0    | 1280×960   | YUV4:1:1     | O (16×16)    | Not specified |
|        | 0    | 1280×960   | YUV4:2:2     | O (16×16)    | Not specified |
|        | 1    | 1280×960   | Mono8        | ×            | 7.5/3.75 fps  |
|        | 1    | 1280×960   | YUV4:1:1     | ×            | 7.5/3.75 fps  |
|        | 1    | 1280×960   | YUV4:2:2     | ×            | 7.5/3.75 fps  |
|        | 1    | 1280×960   | RAW8         | ×            | 7.5/3.75 fps  |

#### **DFW-X710**

#### **Fixed format**

|        |      |                   |              | Frame Rate |     |      |       |
|--------|------|-------------------|--------------|------------|-----|------|-------|
| Format | Mode | Image Size        | Color Coding | 15         | 7.5 | 3.75 | 1.875 |
| 0      | 1    | $320 \times 240$  | YUV4:2:2     | 0          | 0   | 0    | _     |
|        | 2    | $640 \times 480$  | YUV4:1:1     | 0          | 0   | 0    | _     |
|        | 3    | $640 \times 480$  | YUV4:2:2     | 0          | 0   | 0    | _     |
|        | 5    | $640 \times 480$  | Mono8        | 0          | 0   | 0    | _     |
| 1      | 0    | $800 \times 600$  | YUV4:2:2     | 0          | 0   | 0    | _     |
|        | 2    | $800 \times 600$  | Mono8        | 0          | 0   | _    | _     |
|        | 3    | $1024 \times 768$ | YUV4:2:2     | 0          | 0   | 0    | 0     |
|        | 5    | $1024 \times 768$ | Mono8        | 0          | 0   | 0    | 0     |

#### **Free format**

| Format | Mode | Image Size | Color Coding | Partial Scan | Frame Rate    |
|--------|------|------------|--------------|--------------|---------------|
| 7      | 0    | 1024×768   | Mono8        | O (16×16)    | Not specified |
|        | 0    | 1024×768   | YUV4:1:1     | O (16×16)    | Not specified |
|        | 1    | 1024×768   | YUV4:2:2     | O (16×16)    | Not specified |

# Notes on the frame rates in Partial Scan Mode

The following table shows examples of frame rates in Partial Scan Mode. Note that the values in the table are given as examples, as the frame rate varies depending on exposure times or areas you have specified.

#### **DFW-X710**

With Trigger OFF, Packet Size = 3072, and video mode = YUV4:2:2

|             | Image Height | Shutter=182 (33.1 ms) |                  | Shutter=3 (9 $\mu$ s) |                  |
|-------------|--------------|-----------------------|------------------|-----------------------|------------------|
| Image Width |              | Frame time (ms)       | Frame rate (fps) | Frame time (ms)       | Frame rate (fps) |
| 1024        | 48           | 49.0                  | 20.4             | 16.0                  | 62.5             |
| 1024        | 96           | 52.1                  | 19.2             | 19.0                  | 52.6             |
| 1024        | 144          | 54.9                  | 18.2             | 22.0                  | 45.5             |
| 1024        | 192          | 58.8                  | 17.0             | 26.0                  | 38.5             |
| 1024        | 240          | 62.1                  | 16.1             | 29.0                  | 34.5             |
| 1024        | 288          | 64.9                  | 15.4             | 31.9                  | 31.3             |
| 1024        | 336          | 69.0                  | 14.5             | 36.0                  | 27.8             |
| 1024        | 384          | 71.9                  | 13.9             | 39.1                  | 25.6             |
| 1024        | 432          | 75.2                  | 13.3             | 42.0                  | 23.8             |
| 1024        | 480          | 78.7                  | 12.7             | 46.1                  | 21.7             |
| 1024        | 528          | 82.0                  | 12.2             | 49.0                  | 20.4             |
| 1024        | 576          | 84.7                  | 11.8             | 52.1                  | 19.2             |
| 1024        | 624          | 89.3                  | 11.2             | 54.9                  | 18.2             |
| 1024        | 672          | 91.7                  | 10.9             | 58.8                  | 17.0             |
| 1024        | 720          | 95.2                  | 10.5             | 62.1                  | 16.1             |
| 1024        | 768          | 99.0                  | 10.1             | 65.8                  | 15.2             |

With Trigger ON, Packet Size = 3072, Shutter = 182 (33.1 ms), and video mode = YUV4:2:2

| Image Width | Image Height | Frequency of trigger<br>(Hz) | Maximum frequency of an external trigger shutter that can be input |
|-------------|--------------|------------------------------|--------------------------------------------------------------------|
| 1024        | 48           | 30.0                         |                                                                    |
| 1024        | 96           | 30.0                         |                                                                    |
| 1024        | 144          | 30.0                         | Frame rates are affected by                                        |
| 1024        | 192          | 30.0                         | exposure time.                                                     |
| 1024        | 240          | 30.0                         |                                                                    |
| 1024        | 288          | 30.0                         |                                                                    |
| 1024        | 336          | 27.7                         | ]                                                                  |
| 1024        | 384          | 25.3                         |                                                                    |
| 1024        | 432          | 23.3                         |                                                                    |
| 1024        | 480          | 21.6                         |                                                                    |
| 1024        | 528          | 20.1                         |                                                                    |
| 1024        | 576          | 18.8                         |                                                                    |
| 1024        | 624          | 17.7                         |                                                                    |
| 1024        | 672          | 16.7                         |                                                                    |
| 1024        | 720          | 15.9                         | ]                                                                  |
| 1024        | 768          | 15.0                         | ]                                                                  |

#### **DFW-SX910**

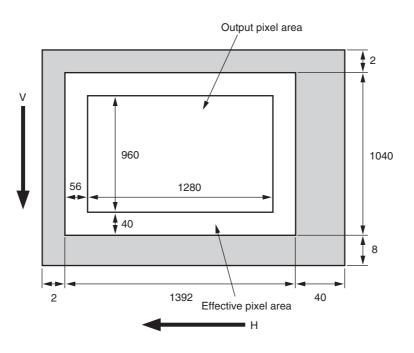
| Image Width | Image Height | Shutter=182 (33.1 ms) |                  | Shutter=3 (9 $\mu$ s) |                  |
|-------------|--------------|-----------------------|------------------|-----------------------|------------------|
|             |              | Frame time (ms)       | Frame rate (fps) | Frame time (ms)       | Frame rate (fps) |
| 1280        | 60           | 65.8                  | 15.2             | 34.0                  | 29.4             |
| 1280        | 120          | 71.9                  | 13.9             | 39.1                  | 25.6             |
| 1280        | 180          | 78.1                  | 12.8             | 45.0                  | 22.2             |
| 1280        | 240          | 84.0                  | 11.9             | 50.0                  | 20.0             |
| 1280        | 300          | 89.3                  | 11.2             | 55.9                  | 17.9             |
| 1280        | 360          | 95.2                  | 10.5             | 62.1                  | 16.1             |
| 1280        | 420          | 100.0                 | 10.0             | 67.1                  | 14.9             |
| 1280        | 480          | 106.4                 | 9.4              | 73.0                  | 13.7             |
| 1280        | 540          | 112.4                 | 8.9              | 78.7                  | 12.7             |
| 1280        | 600          | 116.3                 | 8.6              | 84.0                  | 11.9             |
| 1280        | 660          | 123.5                 | 8.1              | 90.1                  | 11.1             |
| 1280        | 720          | 128.2                 | 7.8              | 96.2                  | 10.4             |
| 1280        | 780          | 133.3                 | 7.5              | 101.0                 | 9.9              |
| 1280        | 840          | 140.8                 | 7.1              | 106.4                 | 9.4              |
| 1280        | 900          | 144.9                 | 6.9              | 227.3*1               | 4.4*1            |
| 1280        | 960          | 151.5                 | 6.6              | 238.1*2               | $4.2^{*2}$       |

#### With Trigger OFF, Packet Size = 2560, and video mode = YUV4:2:2

\*1 At this setting, amount of data output from the camera exceeds the 1394 bus bandwidth limitation. Thus, the frame rate reduces in half. Set the Shutter value to 22 (484  $\mu$ s) or larger.

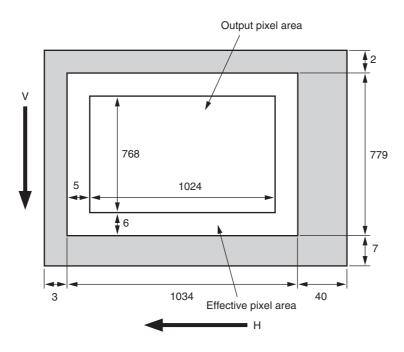
\*2 Set the Shutter value to 49 (2.4 ms) or larger.

| Image Width | Image Height | Frequency of trigger<br>(Hz) |
|-------------|--------------|------------------------------|
| 1280        | 60           | 30.0                         |
| 1280        | 120          | 25.2                         |
| 1280        | 180          | 22.1                         |
| 1280        | 240          | 19.5                         |
| 1280        | 300          | 17.6                         |
| 1280        | 360          | 16.0                         |
| 1280        | 420          | 14.6                         |
| 1280        | 480          | 13.5                         |
| 1280        | 540          | 12.5                         |
| 1280        | 600          | 11.7                         |
| 1280        | 660          | 10.9                         |
| 1280        | 720          | 10.3                         |
| 1280        | 780          | 9.7                          |
| 1280        | 840          | 9.2                          |
| 1280        | 900          | 8.8                          |
| 1280        | 960          | 8.4                          |


With Trigger ON, Packet Size = 2560, Shutter = 182 (33.12 ms), and video mode = YUV4:2:2

Maximum frequency of an external trigger shutter that can be input

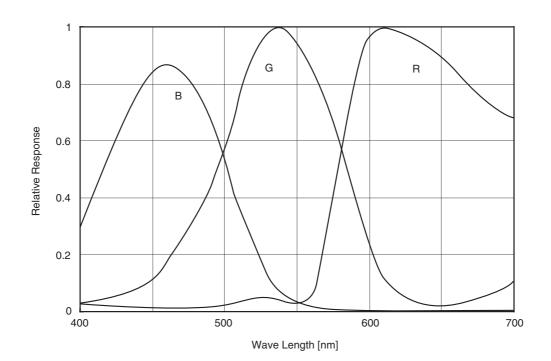
# **CCD Pixel Location (Top View)**


#### DFW-SX910

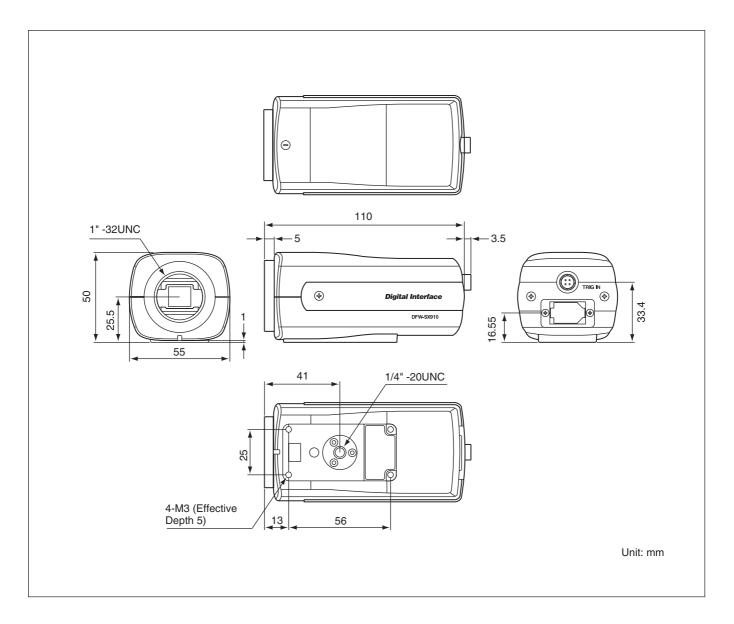
Total number of pixels: $1434 (H) \times 1050 (V)$ Number of effective pixels: $1392 (H) \times 1040 (V)$ Number of output pixels: $1280 (H) \times 960 (V) (Max.)$ Size of unit cell:  $4.65 \ \mu m (H) \times 4.65 \ \mu m (V)$ 



#### **DFW-X710**


Total number of pixels: $1077 (H) \times 788 (V)$ Number of effective pixels: $1034 (H) \times 779 (V)$ Number of output pixels: $1024 (H) \times 768 (V)$ Size of unit cell: $4.65 \ \mu m (H) \times 4.65 \ \mu m (V)$ 




### Spectral Sensitivity (Relative Response) Parameters

(Without lens and light source parameters.)

#### DFW-SX910/X710



# Dimensions

